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The “Generalized Riemann Problem” (GRP) method is applied to 1-D compressible Rows 
with material interfaces and variable cross section. The resulting scheme is second-order and 
uses a “mixed-type” grid, where cell boundaries can be either Lagrangian or Eulerian. In fact, 
using the analytic resolution of discontinuities at cell boundaries, provided by the GRP 
solution, one can extend the scheme presented here to include any adaptive mesh. 

Two numerical examples are studied: a planar shock-tube and exploding helium sphere. It 
is shown that discontinuities are sharply resolved while there are no oscillations in the smooth 
part of the flow. In particular, wave interactions, including formation of new shocks and 
reflection from the center of symmetry, are automatically taken care of. 0 1986 Academic Press, 

1°C. 

1. INTRODUCTION 

In two recent papers [ 1, 21 a second-order upwind scheme was presented for the 
computation of time-dependent inviscid compressible fluid flow in one space dimen- 
sion and variable cross section. This scheme has been successfully applied to a 
variety of test-cases, involving single-material (Eulerian or Lagrangian) flows, 
yielding always sharp resolution of discontinuities and very smooth solutions 
between them. 
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GENERALIZED RIEMANN PROBLEM 1-71 

in physical applications one often encounters m~~t~~rnater~al 
sive effects in Eulerian calculations, it is necessary to keep tr 

fluid interfaces. The introduction of interfaces gives 
“mixed type,” namely, cells which have one Eulerian 

In the present work we show that the original 
oblem) scheme [l, 21 can be readily extended to a 
alytic expressions for the fluxes between cells. 
It is important to note that the scheme presented here can be used with any &a~- 

the mesh. In fact, the fluxes can be analytically evaluated across any line emanating 
from the singularity (representing the jump between two adjacent cells). This 
enables one to follow shock trajectories or any other “‘preferred” directions in the 
grid. 

The paper consists of two parts. In the next section we discuss the scheme in 
general terms, The various quantities are reduced to those given exp~~c~t~~ in 123, so 
we feel it is not needed to give again the explicit formulae. Section 3 we discuss 
two numerical examples. The first is the well-known s k-tube problem 
suggested by Sod [4]. We compare the results of the pure Eulerian method 
and the present e and demonstrate how the resolution of the contact d 
tinuity is improv while the other regions of the flow remain int 

the case of a helium sphere exploding into air. 
aper by Glass and Saito [3]. This case invoH 

cture, including the formation of a new (converging) shock, 
center of symmetry, etc. 

Et should be emphasized that both test cases were run on the same code, using a 
“minimal” monotonicity algorithm. Also, no special treatment was needed at the 
center of symmetry when we implemented there the procedure 

2. DISCUSSION OF THE h%ME 

Consider the system of equations representing time-dependent invisci 
ow in one space dimension r but with variable cross section Am In 

“quasi-conservation” form, these equations are 

ere p7 p> u are, respectively, density, pressure, and vel ity, E= e + $U” is t 
specific energy (e being the internal specific energy), a an equation of sta 
form p =p(e, p) is assumed. 
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Now let D, be a moving zone in the flow given by 

D,= {rIa(t)<r<b(t)). 

Clearly, 

d 

iii Dt s 
UA(r) dr = 

1, D !$A@) dr+b’(t) A(b(t)) U(b(t), t) 
(2.2) 

-a’(t) A(4t)) U(4t), t). 

In conjunction with Eq. (2.1) we get, using obvious notation, 

f jD, UA(r)dr= CA(r)(UA-F(U))l~l:l::- jD ;G(U).A(r)dr, (2.3) 
I 

where /i(r(t), t) = r’(t). 
As usual, a finite difference form of (2.3) is obtained by selecting a sequence 

t, = y1 At of t-values and replacing the continuous values of U by discrete cell 
averages U;. Here the index i denotes the spatial cell with the moving boundaries 
ag, by (a; < r 6 by), whose volume is given by 

s 
b: vy = A(r) dr. 
4 

Values at the cell-boundaries ui, bi are labeled, respectively, by i- 1 and i + 5. In 
order to obtain a time-centered scheme they must be evaluated at t, + 1,2. Thus, our 
finite difference form corresponding to (2.3) is 

VY At u;+L u;--L+--- 
,y+’ ,;+I {[(U/i-F(U))A];$$-[(U/I-F(U))A];_+$; 

In order to obtain second-order accuracy for the scheme (2.4) we assume that the 
values U” are linearly distributed in cells. The boundary values U;:$ are then 
determined by the GRP analytic method of [a]. Note that cell-boundaries are 
moving relative to the Eulerian grid, so that the full strength of the GRP method is 
needed in order to determine the time behavior of flow quantities along curves 
emanating from the singularity. In our examples the “mixed-type” cells had one 
Lagrangian (namely, A = U) and one Eulerian (/i = 0) boundary. In both cases, a 
detailed analysis of the flux-vectors was given in [2] and we shall not repeat it here. 
Finally, the slopes at time t,, 1 are determined simply by (U;$& - U;ft,2)/ 
(rYz$ - r;ff,2 ). These slopes are subject to van Leer’s monotonicity algorithm, as 
discussed in [l]. 
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interface 

I 
I Eulertan grid 

I I I 1 
1 1 Modified grid 

FIG. I. The Eulerian grid modified by an interface point fi + f denote boundaries of cell i). 

In implementing the scheme (2.4) one must take into account one additional 
feature which is associated with the moving boundaries, namely, the varying sizes of 
computational cells. In particular, a moving cell-boundary may approach its 
neighboring Eulerian grid-point, thus shrinking one computational cell and 
expanding the other. This would force a very low time step and an inefficient and 
distorted calculation. To avoid such phenomena, and at the same time keep the 
programming simple and robust, we have used the following procedure. Each inter- 
face point (that is, a point designated to be a Lagrangian moving boundary) 
replaces its nearest Eulerian grid-point. Thus, a pair of adjacent “pure” Eulerian 
cells (one of which contains the interface) is replaced by a pair of “‘mixed-type” cells 
having the interface point as a common boundary and a total length of 2 dr (see 
Fig. 1). 

Whenever the (Eulerian) length of a “mixed-type” cell exceeds 1.5 dv, the 
eliminated Eulerian grid-point is restored, and the one on the other side of the 
interface is eliminated. Thus, lengths of “mixed-type” cells are always between 
0.5 dr and 1.5 dr. This procedure of elimination and restoration of Eulerian grid- 
points conserves mass, momentum, and total energy and enables moving boun- 
daries to travel across the Eulerian grid without distorting considerably the mesh. 

3. NUMERICAL EXAMPLES 

(a) Our first example is the planar shock-tube test problem suggested by Sod 
[4]. The tube extends from x = 0 to x = 100 and is divided into 100 equal cells. The 
gas is initially at rest (u=O) with p=p = 1 for Odn< 50, p=O.l, p =0.125 for 
50 <x < 100. The resulting (self-similar) solution involves a shock moving to the 
right and a centered rarefaction wave travelling to the left. They are separated by a 
contact discontinuity. The pure Eulerian version of the GRP method has 
applied to this problem in [ 11. In Fig. 2 we show the results of this computation at 
t = 1.5, when the shock has moved approximately 25 points to the right. Note that 
there is some smearing (2-3 mesh-points) of the contact discontinuity. In Fig. 3 we 
show profiles (velocity, pressure, density, and p/p’, y = 1.4) for the same problem, 
using the present “mixed” scheme. As could be expected, the contact disco~t~~~~t~ 



x"ELOC,TY* ATT= 15 000 *PRESSURE* ATT= 15.000 

A 

0. 

*DENSITY* AT T= 15.000 

0 
0. 

0. I 
100. 0. 

*P,RO**G* ATT= 15.WO 

3. 

0. L 
nn n lb”. Y 

FIG. 2. Results for Sod’s problem, using pure Eulerian grid. 
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is sharply resolved. At the same time, the scheme maintains the big~-resol~~~o~ 
features of other regions of the flow (shock front, edges of rarefactio~), 

(b) To demonstrate our scheme in a case involving two materials and a varia 
cross section, we took up a test case involving a pressurized helium sp 
exploding into air. The resulting spherically symmetric how has been camp 
previously by Glass and Saito using a modified random choice method [3]s w 
seems to have been the only method capable of resolving the complex wave struc- 
ture in this case. A helium (y = 513) sphere of radius 2.5 is surrounded by 
(y = 715) and is initially at rest with uniform pressure which is 18.25 times 
surrounding air pressure and uniform density which is 2.523 times that of the air. In 
Figs. 4-8 we plot the profiles of flow variables at 0.6 time unit intervals (for a 
sphere of 2.5 cm, air pressure of 1 atmosphere, and air density of 1.29. lW3 gr/cm3, 
one time unit is 35.68 psec). Let us review briefly the flow evolution in this case (see 
[3] for a more detailed discussion). 

At & = 0.6 (Fig. 4) we observe the diverging shock, followed by a contact discon- 
tinuity and a very strong rarefaction. In fact, the excessive rarefaction lea 

ation of an inward-facing shock which is clearly seen at t = 1.2 (Fig. 
y that time, the rarefaction has been fully reflected from the center of symmetry 
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FIG. 8. Explosion of helium sphere, profiles at r = 3.0. 
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and the velocity profile is nearly linear, as could be expected for such a solution 
with self-similarity. 

At times 1.8 and 2.4 (Figs. 6 and 7) it is clearly seen that, while the diverging 
shock decelerates, the converging shock gains speed, leading to a large velocity 
gradient behind it. We have located the time of arrival of this shock at the center 
around t = 2.6. This is in agreement with the results of [3]. 

Finally, at t = 3 (Fig. 8) both shocks are diverging. Notice the sharp resolution of 
the contact discontinuity and the overall smoothness of the flow profiles. In fact, 
studying the time evolution of the flow near Y =0 following the reflection of the 
rarefaction wave (i.e., t > 0.6) we could lit our numerical results by 

4r, t) - f-It, p(0, t) - t -5.5, p(0, t) - tr3.3. 

This result is in complete agreement with the isentropic nature of the flow there, 
namely, pIpy is constant, with y = 513. 
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